Almost ready!
In order to save audiobooks to your Wish List you must be signed in to your account.
Log in Create accountShop small, give big!
With credit bundles, you choose the number of credits and your recipient picks their audiobooks—all in support of local bookstores.
Start giftingLimited-time offer
Get two free audiobooks!
Nowโs a great time to shop indie. When you start a new one credit per month membership supporting local bookstores with promo code SWITCH, weโll give you two bonus audiobook credits at sign-up.
Sign up todayAIQ
This audiobook uses AI narration.
Weโre taking steps to make sure AI narration is transparent.
Learn moreRandom House presents the audiobook edition of AIQ by Nick Polson and James Scott, read by Nick Polson and Walter Dixon.
Two leading data scientists offer an up-close and user-friendly look at artificial intelligence: what it is, how it works, where it came from and how to harness its power for a better world.
Dozens of times per day, we all interact with intelligent machines that are constantly learning from the wealth of data now available to them. These machines, from smart phones to talking robots to self-driving cars, are remaking the world in the twenty first century in the same way that the Industrial Revolution remade the world in the nineteenth.
AIQ is based on a simple premise: if you want to understand the modern world, then you have to know a little bit of the mathematical language spoken by intelligent machines. AIQ will teach you that language but in an unconventional way, anchored in stories rather than equations.
You will meet a fascinating cast of historical characters who have a lot to teach you about data, probability and better thinking. Along the way, you'll see how these same ideas are playing out in the modern age of big data and intelligent machines, and how these technologies will soon help you to overcome some of your built-in cognitive weaknesses, giving you a chance to lead a happier, healthier, more fulfilled life.
Includes a PDF download.
'There comes a time in the life of a subject when someone steps up and writes the book about it. AIQ explores the fascinating history of the ideas that drive this technology of the future and demystifies the core concepts behind it; the result is a positive and entertaining look at the great potential unlocked by marrying human creativity with powerful machines.'
Steven D. Levitt, co-author of Freakonomics
Nick Polson is Professor of Econometrics and Statistics at the Chicago Booth School of Business. Nick is a Bayesian statistician involved in research in machine intelligence, deep learning, and computational methods for Bayesian inference. He has developed a number of new algorithms and applied them across a variety of fields, including finance, economics, transportation and applied statistics. Nick was born in England, studied maths at Worcester College, Oxford; and obtained a PhD in Bayesian Statistics. He regularly speaks to large audiences in the US, UK and the rest of Europe.
James Scott is Associate Professor of Statistics at the University of Texas at Austin. James is a statistician and data scientist who studies Bayesian inference and computational methods for big data. His has collaborated with scientists in a wide variety of fields, including health care, nuclear security, linguistics, political science, finance, management, infectious disease, astronomy, neuroscience, transportation and molecular biology. He has also worked with clients across many different industries, from tech startups to large multinational firms. James lives in Austin, Texas with his wife, Abigail.
His academic research has been featured in The New York Times, the Washington Post, ABC, NBC, Fox, the BBC UK, BBC World News, Radio 4, The Guardian and many other prominent media outlets.
Nick Polson is Professor of Econometrics and Statistics at the Chicago Booth School of Business. Nick is a Bayesian statistician involved in research in machine intelligence, deep learning, and computational methods for Bayesian inference. He has developed a number of new algorithms and applied them across a variety of fields, including finance, economics, transportation and applied statistics. Nick was born in England, studied maths at Worcester College, Oxford; and obtained a PhD in Bayesian Statistics. He regularly speaks to large audiences in the US, UK and the rest of Europe.